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SUMMARY 

Under section 303(d) of the Clean Water Act, states must identify water segments where loads of. pollutants are 
violating numeric water quality standards. Consequences of misidentification are quite important. A decision that 
water quality is impaired initiates the total maximum daily load or TMDL planning requirement. Falsely 
concludin~ that a water segment is impaired results in unnecessary TMDL plannine and oollution control 
i~n~lemeniationcosts. On the other hand. hlscly concluding that a ,&ment is not in lp~~rcd  m.8~ pose a nrk to 
human health or to the sen ices of the aquatic environment. Becausc of the cunsequencc,, a method 1s dc,ired that 
minimizes or controls the error rates. The most commonlv applied aooroach is to use the Environmental . .. .. 
Protection Agency (EPA)'s mw score approach in which a stream scgmrnr is lirted 31 impired when grcaler than 
10 per cent of the measurements of water quality conditions exceed a numeric criteria. An alternative to the EPA 

~ ~ 

aovroach is the binomial test that the orooortion exceedine the standard is 0.10 or less. This ao~roach uses the 
number of samples exceeding the criteha as a tesi statistic Gong with the binomial distribution fi; evaluation and 
estimation of error rates. Both approaches treat measurements as binary; thevalues either exceed or do  not exceed 
the standard. An alternative approach is to use thc actual numerical ;ulucr to eval~atc al~ndard. This method is 
referred to as variables acceptance sampling in quality control literature. The methods are compared on the basis 
of error rates. 

If certain assumptions are met then the variables acceptance method is superior in the sense that the variables 
acceptance method requires smaller sample sizes to achieve the same error rates as the raw score method or the 
binomial method. Issues associated with potential problems with environmental measurements and adjustments 
for their effects are discussed. Copyright 02003 John Wiley & Sons, Ltd. 
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1. INTRODUCTION 

In  the United States, every state is required under Section 303(d) o f  the Clean Water Act to  identify 
water segments where anthropogenic pollution is leading to  violations of  water quality standards. A 
standard is a numerical criterion that is  set a s  an indication of  a healthy water body. Water segments 
that are in violation are  listed and may h e  required to  undergo a further assessment known as the Total 
Maximum Daily Load (TMDL)process. T h e  TMDL process is a study of the watershed near the site to  
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determine the amount of pollutant that may be tolerated by the watershed without violating the 
standard. Part of the study involves identification of pollution sources, steps for reducing the pollution 
load to the system and a plan for reducing pollution inputs. Clearly this can be a costly process and 
state agencies have expressed concerns about the monitoring and listing process. For example, the 
State of Virginia monitors over 17000 miles of watenvays that are divided into segments. A set of 
segments within the waterways is sampled on a (typically) monthly or quarterly basis. Since the law 
requires an assessment on a two-year cycle the monitoring program results in a large amount of 
information. However, decisions are made on a site-by-site basis and the sample size for an individual 
site is often small. For example, quarterly sampling typically results in eight observations to make the 
decision to list or not list the segment. 

Critical to the listing process are the data that are collected and the decision process used to list a 
segment. The challenge to the assessor is to use the limited data that is available to determine if the 
stream is violating standards, given that samples might be affected by variation and natural or 
background conditions. The typical approach for making a decision involves both objective and 
subjective methods. All information that is collected is to be used in the process, and this might include 
anecdotal information, testimony, and citizen monitoring data as well as samples collected by the 
agency. The objective approach involves a simple test of the data that we refer to as the 'raw score' 
approach. Specifically if more than 10 per cent of the samples exceed the standard then the site is 
declared to not meet the usability criteria. 

From a statistical perspective, the conceptual model for evaluation of water quality is presented in 
Figure 1. In Figure 1 the measurement is a concentration of some contaminant in the ambient water. 
The distribution of the concentration represents a possible range of values that might be observed at a 
site over the time period of interest and the standard is one possible concentration. The standard may 
have been chosen based on laboratory data, previous field data or expert opinion. Suppose the water 
quality guidelines require that a concentration of 8.0 or less should be met 90 per cent or more of 
the time. In the raw score approach the proportion of samples that exceed the standard is calculated 
and, if this is greater than 10 per cent, the site is listed. For example, if there are five samples and one 
or more exceeds the standard, the site is declared impaired. The same is true for all sample sizes 
between one and nine. For sample sizes between 10 and 19, one sample is allowed to exceed the 
standard but not more. The diagram suggests several other approaches to the analysis of data arising 
under this scheme. 

0.25 
standard 1 

0 5 10 15 

Concentration 

Figure I. Hypothetical distributions of measuremenu for listing and not listing a site as impaired based an measurements 
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Figure 2. Probability of listing a site that is not impaired (Type I errorrate) for different sample sizes forthe raw scoremethod 
and the binomial method choosing a cut point to bound the enox at 0.20 

One alternative described in Smith et al. (2001) uses a binomial testing approach for evaluation of a 
standard (see also McBride and Ellis, 2001, for a different approach). Smith et al. (2001) viewed the 
assessment problem as a decision process and recognized that error rates should be considered. 
Specifically, let p be the probability of exceeding the standard. Then the problem may be set up using 
hypothesis testing with Ho:p<po (no impairment, don't list) versus HI: p >po (impairment, list). 
The value ofpo would be set to 0.10 and the test based on j,the proportion of measurements exceeding 
the standard. 

The hypothesis testing scenario suggests evaluation of tests based on error rates. From the 
environmental perspective, the assessor needs to be concerned about falsely listing a site and failing 
to list a site that is in poor condition. Falsely listing a site may trigger the TMDL process and incur 
unnecessw constraints on agriculture or industry. Failing to list a site that has poor water quality may 
result in increased risk to human and ecological health. If error rates are considered, Smith et al. 
(2001) show that the raw score method has a strong tendency to falsely list a site. The binomial method 
as might be typically applied (i.e. using a Type I error rate of 0.05) will have a tendency to not list sites 
that should be listed (Figures 2 and 3). However, the binomial approach allows for control of both 
errors, and sampling plans may be developed to set error rates at satisfactory levels for sufficient 
sample sizes. Both methods may be criticized, as the actual numerical value is not accounted for. In the 
above example, a value of 8.1 is treated the same as a value of 801; it simply exceeds the standard of 8. 
An alternative to these approaches is based on acceptance sampling by variables. 

Acceptance sampling is a major field in statistical quality control where the view is that a group or 
lot of manufactured items is to be accepted or rejected. Based on a sample from the lot, a manager 
makes a decision. Evaluation of the method is based on the risk of accepting lots of given quality, and 
sampling plans are developed to try to minimize error rates. 

There are two approaches to acceptance sampling in the literature. The first approach is acceptance 
sampling by attribute, in which the product i s  specified as defective or non-defective based on a certain 
cutoff point. The number of defectives is used as the test statistic. This is the same as the binomial test. 

The other type is acceptance sampling by variables, where the value of the measurements is taken 
into account when calculating the test statistic. There are two approaches to the problem. One is to 
calculate, given the probability model, the area under the probability density that is more extreme than 
the standard and evaluate if this exceeds the desired impairment probability (in our case 10 per cent). 
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The second approach is to calculate the value of a parameter, typically the mean, that results in the 
distribution having a standard with associated probability of 10 per cent. The mean of the observed 
data is then compared with the derived mean. As the method uses actual values, it may be more 
informative. This is reflected in the fact that acceptance sampling by variables requires a smaller 
sample size than the attributes plans to have the same operating characteristic curve (OC), i.e. the 
probability of accepting a lot of items as a function of the proportion of defectives. However, in 
acceptance sampling by variables the distribution of the measurements must be known. 

Since World Warn, variables-acceptance sampling plans have been in use, although primarily in an 
industrial quality control context. Under the assumption that the characteristic being measured is 
normally distributed, many plans have been developed. Lieberman and Resnikoff (1955) developed an 
OC-matching collection of plans based on known variance, unknown variance and average range. 
These plans were indexed by the acceptable quality level (AQL, i.e. producer's risk). Owen (1966) 
introduced one-sided variables sampling plans that are indexed by the AQL as well as the lot tolerance 
percent defective (LTPD, i.e. consumer's risk) for the unknown variance case. A year later, Owen 
(1967), developed a variable sampling plan for two specification levels. Variables-acceptance 
sampling plans were covered in many books. Among these are: Bowker and Goode (1952), Duncan 
(1974), Guenther (1977). Grant and Leavenworth (1980), and Schilling (1982). 

Plans for non-normal distributions have been considered in the literature, as long as the form of the 
underlying distribution is known and the proportion of defectives could be calculated just from 
knowing the parameters of the distribution, usually the mean. Srivastava (1961) and Mitra and Das 
(1964) investigated the effect of non-normality for one-sided plans. Zimmer and Burr (1963) 
developed variables sampling plans using measures of skewness and kurtosis to adjust for non- 
normality. Guenther (1972) introduced variables sampling plans when the underlying distribution is 
Poisson or binomial. Duncan (1974), in his book, developed a plan under the assumption that the 
distribution of the observations is a member of the Type III Pearson family, which in its standardized 
form depends only on the coefficient of skewness. Guenther (1977), in his book, considered the 
exponential family as the underlying distribution. Lam (1994) developed Bayesian variables sampling 
plans for the exponential distribution with Type I censoring. Suresh and Ramanathan (1997) derived a 
plan for symmetric underlying distributions. Plans for autocorrelated observations are described in 
Hapuarachchi and Macpherson (1992). 

In this article, the variables acceptance approach is used to study the problem of listing sites under 
the Clean Water Act. Methods based on use of actual values are shown to have error rates superior to 
methods based on binary information. Positive autoconelation in data is a potential problem and is 
shown to increase the Type I error rates. Two methods for adjusting for autocorrelation are presented 
and error rates are calculated for these methods. Estimates of sample size are given that will achieve 
specific error rates for independent and autocorrelated situations. The approach taken is similar to that 
in Barnett and Bown (2002), who develop a testing approach for composite samples. 

2. VARIABLES PLAN FOR THE NORMAL DISTRIBUTION 

A variety of tests are discussed in the acceptance sampling literature for normally distributed data. All 
involve calculation of a critical value for a test based on the mean and are summarized in Table 1. 
Owen (1966,1967) (see also Duncan, 1974) presented the acceptance sampling by variables technique 
when the distribution of the measurements is normal with either known or unknown standard 
deviation. This section summarizes that material in the context of environmental sampling. 
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Table 1. Cutoffs for different methods of testing Ho :p 5 po versus HI:p > po using the test statistic for a 
lower standard L of the form test = (.Z -L)/s  or a test slatistic of the form test = (U-%)Is for an upper 
standard. The value in the table is the cutoff k that defines the rejection region. For example, with a lower 

standard we reject if lest = (.Z - L)/s  < k 

Method Plotting acronym Cutoff 

Normal, variance known k =--b ZPJ\h 
iot/2ni$ +4n - 222,- 2 n z ~  

Wallis approximation Wallis k = 2n -i? 

Normal, variance unknown (non-central 1) NCT k=-
J;; 


where X = -J;izPO 

AR(1) using normal approximation (Hapuardchchi plan) HAP 

ARO) using non-central t 

whete X = -dB; 

Suppose that the environmental measurements have a normal distribution with mean p and standard 

deviation u. The criterion is assumed to be some upper (lower) specified limit U(L). Then the 
proportion of defective items p can be calculated aspu = a[(@- U)/u] ,where is the cumulative 
distribution function for a standard normal random variable (analogously p~ = + [ ( L- p)/u]) .  
Specifying p,  u and U will specify p. Moreover, if u is constant, then p will depend only on U and 
p. In this case, instead of testing hypotheses about p we can rather evaluate hypotheses about p and 
then base our analysis on the sample mean E.Therefore, to test Ho :p 5 po (no impairment, don't list) 
versus HI:p > po (impairment, list), we can proceed in two ways. First, if there is a single upper limit 
U, use the sample mean to compute zu = (U-E ) /u  and then reject Ho if z u c k ,  where 
k = z,/& - b o .  In the second procedure, the proportion of impaired samples is estimated by 

and the null hypothesis is rejected i f j ,  > m, where m = ~ ( k - ) .  It is notable that the second 
procedure may be preferable since it gives adecision based on the probability of a defective item. If we 
have a lower standard instead of an upper one, then z~ = (i-L)/u and k will he the same. The 
estimated proponion of impaired sites is 
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Owen also presented an analysis for the case of double specification limits, i.e. lower and upper 
limits. 

2.1. Normal distribution with unknown variance 

Lieberman and Resnikoff (1955), developed acceptance sampling plans for data from a normal 
distribution with unknown variance. A reasonable test statistic for the hypothesis using a lower limit is 

which has a non-central t distribution with n - 1 degrees of freedom and non-centrality parameter 
X = -zp&. The hypothesis is rejected if The power curve could be obtained by t < ~, , -I ,A,*.  
calculating Pr(t < &k) = PI(! < t n - l , ~ , l - ~ )for specified values of p or p and Type I1 error p. 
Here k = t . - l , ~ , ~ / & .An alternative is to use 

The hypothesis is rejected if t < k. 
Wallis (1947) suggested an alternative approach. This approach is approximate and was designed to 

avoid the use of the non-central t distribution. The test statistic is still the same and the value of k is 
given by 

z, 42- - 2nzN 
k = (3)2n - zi 

2.2. Tests with autocorrelated data 

A potentially important problem in using measurements collected over time is the possibility that the 
measurements are correlated. Hapuarachchi and Macpherson (1992) studied the effect of serial 
corielation on acceptance sampling plans by variables assuming the measurements follow an 
autoregressive of order p [AR(p)] process. They assumed that the flh measurement x, is modeled as 

with p a constant (usually the mean of the process) and the e,'s assumed to be independently normally 
distributed with mean of zero and variance of 4.In the model (4), y, is said to follow an AR(p) 
process. A special case is the AR(1) process specified by 

This model is more common to water quality issues. 
For an AR(1) process it can be shown that the approximate sample variance of the mean is (Darken 

et al,, 2000) 
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An approximate test for HO: p 2 /& versus HI: p < p~ would again be based on the t statistic. The 
critical value k would be based on a non-central r distribution with n -1 degrees of freedom and 

non-centrality parameter X = -z,\l[n(l - 6) ] / (1+ 6),where 6 is the estimated autocorrelation. So, 
we are using the same test statistic when assuming independence; however, the cutoff point of the test 
is modified to take the dependency among the measurements into account. Note that the distribution of 
the test statistic depends on the autoregressive parameter 9. 

Also note that, with a positive autocorrelation structure, the non-centrality parameter and hence the 
cutoff point is less than the independence cutoff point. Thus, rejection is not as easy as it is in the 
independence case. 

3 .  SAMPLE SIZE 

One use of the above methodology is to set up a sampling plan that attempts to control the error rates. 
In particular suppose that it is desired to set up a variables plan which has a probability a of falsely 
declaring a site impaired for a site with an acceptable proportion po of measurements actually more 
extreme than the standard and a probability for falsely not listing an impaired site that has an 
unacceptable proportion pl of measurements more extreme than the standard. Typically, pl is a value 
chosen to be a worst case in the sense that we want a site listed with high probability if this proportion 
of measurements does not meet the water quatity standard. Under the first procedure (normal 
distribution with known variance) with an upper standard we will not declare impairment if 
Z, = [(U - .t)/u]2 k. It can be shown (Duncan, 1974) that the suitable sample size n is given by 

where z,,zp,zp, and z,, represent respectively the a,P, po and pl quantiles of the standard normal 
distribution. 

3.1. Sample size with unknown vuriance 

When the standard deviation is unknown, almost the same procedure for the known standard deviation 
is used to calculate sample size except that we replace the population standard deviation u by the 
sample standard deviation s. Three methods are available to derive a variables plan in this case. In 
the first method, special formulas for finding n and k, according to certain values of po, p , ,  a and p, 
are introduced by Wallis (1947). They are 

and 

These formulas are based on the assumption that .T fks is approximately normally distributed with a 
mean of p fk u  and variance $ ( l / n  + k2 /2n ) .  

Copyright O 2003 John Wiley & Sons, Ltd. Environn~etrics2003; 14: 373-386 



- - 

380 E. P. SMITH ETAL. 

Table 2. Estimated lower values (i)and cutoffs for test for impairment based on different statistics and Type I 
error rates for dissolved oxygen data. If the lower value is smaller than 5.0, this indicates listing the site. The 

autocorrelation was estimated to be 0.6699 and the calculated test statistic is 1.135 

Methad Type I error rate Cutoff (k )  Estimated lower value (i) 

I 0.05 0.891 5.44 
Normal 0.885 5.45 
AR(I) 
t 0.10 

0.522 
0.972 

6.10 
5.29 

Normal 0.965 5.31 
ARI I ). . 0.687 5.80 
I 
Normal 
ARf 1) 

The second method is from a monograph due to L. J. Jacobson. Using the Jacobson monograph and 
specified values of po,pl, a and 0, we can calculate n and k.  The Jacobson approach is presented in 
Duncan (1974, Ch. 12, p. 271). However, the results obtained by this method are not precise and Owen 
mentioned a third method that gives more precise results. 

In the third method, the analysis is based on the exact distribution rather than the approximate 
distribution proposed by Wallis. The exact distribution when using the sample standard deviation 
instead of the population standard deviation is the non-central t distribution with n - 1 degrees of 
freedom. To find n and k i n  this case, a special table specifically designed for this purpose has been 
prepared by Owen (1963, Table 2). Lieberman and Resnikoff (1955) provide special tables to get jj. 
and m according to a given sample size n and accepted quality level (i.e. p a )  These tables are found in 
(Lieberman and Resnikoff, 1955). Another set of tables was produced in Statistical Research Group 
(1947, pp. 22-25). 

Hapuarachchi and Macpherson (1992) describe sev&al approaches for estimating sample size when 
data are autocotrelated. In the case of unknown variance, the authors note that the distributions of 
needed quantities are difficult to obtain. For the AR(1) case, they suggest using an approximate sample 
size given by 

Table 3. Sample sizes calculated to achieve pre-determined ermr rates for different methods with 
autocorrelation set to zero. Values were rounded UD to the nearest integer 

"w 1 Type 11 Normal (uknown) Wallis approx. Non-central t 

0.05 0.05 30 58 44 
0.1 24 44 34 
0.2 17 30 24 

0.1 0.05 24 48 76 

Copyright O 2W3 John Wiley 8r Sons, Ltd 
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Table 4. Sample sizes calculated to achieve pre-determined error rates for 
different methods with varying autocorrelation. Values were rounded up to the 

nearest integer. The Tyve I and II ermr rates were both set to 0.2 

Autocorrelation HAP NCT AR(I) 

which is just the normal based approach (Equation 7) adjusted for antocorrelation. One might also adapt 
the sample sizes calculated using one of the other methods for the correlation by multiplying by a factor 
[(I + @/(I  - g)]. Another approach would use the non-central t distribution with the adjustment. 

4. COMPARISON OF METHODS 

Given the variety of methods a comparison is warranted. It is possible to analytically compare some of 
the methods under certain conditions. In situations where the error rates could be exactly calculated for 
all methods (Figures 2 and 3) we used the analytical approach. When analytical solutions were not 
possible for all the methods we relied on a simulation for the comparisons. In, the simulations, 
normally distributed data were generated with different levels of autocorrelation (B=0.0, 0.25, 0.5, 

TEST 
- b~nom~al --- NC T 

raw score 
0.0 

0 10 20 30 40 50 60 
- - -  Wallis 

Sample size 

Figure 3. Plot of vrobabilitv of not listine an im~aired site (Bi "sine binomial. raw score and acceotance sarn~line methods.- ... - . - ~~~ ~~ 

Note that the probability an unimpaired site is listed (a)is set to 0.2 for the methods. This e m  rate is not set for the raw score 
method. Values of thiserror ratearegiven in Figure2. The parametersof the normaldistribution were set so the vrobabilitv that a 

measurement was more extreme than the standard. The binomial probability of impairment was set to 0.25 
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0.75) and evaluated using cutoff points associated with different Type I error rates (a=0.05,0.1,0.2). 
For estimation of Type I error rates the site was assumed to meet standards (po =0.1), while for the 
estimation of Type I1 error rates the site was assumed to not meet standards (p, = 0.25). For 
estimation of the e m r  rate for a given case, 10000 times series were generated with sample sizes 
ranging from 5 to 50. A 'bum-in' of 20 points was used to stabilize the time series (e.g. for the 
case Ns5 .25  observations were generated but only the last 5 were used). For purposes of space just 
the results for the cases a=0.2 and 0 =0.0 and 0.5 are discussed. 

Figure 2 displays the Vpe  I error rates for the binomial and raw score methods with no 
autocorrelation. What is obvious from this display is that the binomial method bounds the Type 1 
error by choice of cutoff to be below 0.20. The raw score method results in a rather large Type I error. 
The raw score method may be viewed as a binomial method with changing Type I error rate. 
Alternatively the binomial method may be viewed as a raw score method with varying cut point. 
The normal based methods with no autocorrelation are not presented as the error rate is set to a fixed 
value. 

Figure 3 displays the Type 11error rate for the two binary methods, the non-central t approach and 
Wallis' approach with at Type I error set at 0.1. The normal case with known variance was not 
considered. The Type I1error rate is large for the binomial method relative to the raw score. This result 
makes sense since the raw score has a high Type I error rate and hence a low cutoff relative to the 
binomial. Therefore it will be more powerful. The normal-based approaches using the actual data 
produce Type I1 error rates similar to the raw score method. Thus if the data are consistent with the 
normal assumption, there is much to gain from using the normal based methods as the Type I error rate 
can be fixed. The method is consistent with the low Type I e m r  rates for the binomial and has similar 
Type 11 error rates to the raw score. We note that there is little difference in terms of error rates for the 
non-central t and Wallis' method. 

Figures 4 and 5 plots this error rate for the tests when the autocorrelation is 0.0 and 0.5. When the 
correlation is zero (Figure 4), we find that the Type I error rates are as expected with the exception of 
the approximation proposed by Hapuarachchi and Macpherson. For this method, the error rate is 
higher than expected. The inflation in the error rate is due to the use of the estimated standard deviation 
rather than the actual standard deviation in the test statistic. Type I1 error rates for the different 
methods based on the normal model yield better error rates than either the binomial or raw score 
approach. These results indicate that if the assumption of normality is met, there is considerable 
advantage to using a parametric method. 

When the autocorrelation is 0.5, we find that not accounting for positive autocorrelation results in 
an increase in the Type I error rate (Figure 5) for most of the procedures. The error rates for the non- 
central t ,  Wallis and binomial methods exceed the preset level of 0.2. The error rate for the non-central 
t is close to the nominal value for small sample sizes but increases with sample size. Error rates for the 
autocorrelation-adjusted tests are less than the desired level for small sample sizes but approach the 
level as the sample size increases. Also note that the maximum error rate for the raw score method is 
slightly decreased over that of Figure 4. When Type I1 error rates are considered, we find that the 
autocorrelation increases the error rate relative to the uncorrelated case (compare Figures 4b and 5b). 
The Type 11error rates for the AR(1) non-central r and the method of Hapuarachchi and Macpherson 
are higher than those of the non-central t and Wallis' method. Relative to the binomial, the 
autocorrelation-adjusted tests generally have smaller error rates. 

Also apparent from the figures is that the Type 11error rates will be large for small sample sizes. 
When the data are not correlated, samples of size 10 might yield reasonable results if one would be 
willing to balance Type I and Type I1 error rates at around 0.2. In the case of correlated data, additional 
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Figure 4. (a) Simulated actual 5 p e  I error rates far different methods using u =0.2 and autocorrelation of0.0 (b) Type 11 error 
rates using 0=0.2 

samples would be required to produce the same error rates and a sample size of 20 is better although 
the number of additional samples depends on the size of the autocorrelation. 

5. EXAMPLE 

As an example we consider monthly data collected over a two-year period on dissolved oxygen. The 
values are plotted in Figure 6. Interest is achieving a (lower) standard of 5.0 withpo = 0.1. The sample 
mean is 1= 7.03 with standard deviations = 1.787, n = 24 and a = 0.05. The calculated value of the 
test statistic is 1.135. Using a non-central t distribution we find the critical value k=0.890. So, one 
does not reject the null hypothesis at a=0.05 and the site would not be listed. Assuming an AR(1) 
process, the autocorrelation coefficient is calculated as 0.6699. We find k =0.521. Using the adjusted 
non-central t statistics, the decision would be to not reject the null hypothesis at a=0.05.  An 
alternative approach is to base results on the estimated limit. Table 2 provides a summary of three 
different tests at different a levels. Id all cases, the estimated lower value (i)is above 5.0 so one would 
not reject. 
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Figure 5. (a) SimulatedV p e  I error rates using ol=0.2 for autoconelated data with correlationof 0.5; (b) simulated V p e  II 
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Sample size calculations are presented in Tables 3 and4. Table 3provides different sample sizes for 
varying Types I and I1 error rates with autocorrelation set to zero. For most cases, sample sizes are 
greater than those achieved by quarterly sampling in a two-year period. Unless error rates are set to be 
large (0.2), relatively large sample sizes are required. Table 4 gives estimates of sample sizes required 
under autocorrelation with Types I and I1 error rates set to 0.2. As indicated in the table, as the 
autocorrelation increases, so does the required sample size. With correlations that might be expected in 
water studies (0.5), roughly 6 years of quarterly data would be required. 

6. DISCUSSION 

The investigation of error rates reveals that the methods currently in use may be improved by adopting 
approaches based on acceptance sampling by variables. In particular, methods based on the non- 
central t distribution produce error rates better than the methods based on discretized data. When 
measurements are made over time correlation is to be expected and adjustments to the test are 
available. Positive autocorrelation effectively reduces the sample size. Current protocols use around 
eight observations over a two-year period to make inferences. Based on the analysis of error rates and 
dissolved oxygen data, the sample size seems inadequate to make strong inferences, even if error rates 
around 0.2 are desired. 

Our approach is based on testing and the use of methods from acceptance sampling. Another 
approach may be based on the use of tolerance intervals (Gibbons, 1994; Hahn and Meeker, 1991). The 
approach based on tolerance intervals using a non-central t distribution is equivalent to the acceptance 
sampling approach using the non-central t .  The tolerance limit approach was suggested by Lin et a!. 
(2000) for use with 303(d) listing. Smith (2002) describes a generalized approach inwhich samples 
from different times or spatial locations are used with a tolerance interval for setting standards. 

Many of decisions made about water quality are based on small sample sizes. For example, if it is 
required to produce a report every two years, the evaluation of water quality might be based on 
quarterly sampling, yielding eight observations. In cases with small sample sizes decisions may be 
affected by variation due to estimation of variance. One approach for improving estimation of variance 
is to use data from alternate sources. For example, there may be several locations within a watershed. 
The information from the multiple sites may be pooled to produce a variance estimate. Estimation of 
variance may also use a Bayesian approach. 

The above literature does not cover multivariate data sets. There is not much work done for the 
multivariate setup. The first work published on this problem was of Baillie (1987a,b). He developed 
direct multivariate generalizations of the variables-acceptance sampling procedures under the 
assumption of multivariate normal distribution. A few years later, Hamilton and Lesperance (1991) 
dropped the assumption of multivariate-normality and proposed a method to deal with multivariate 
data using Wallis' (1947) advice. They transformed the bivariate data into one normal variable, and 
then applied the univariate techniques to their new variable. 
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